DEVELOPMENT OF A SLIP LINE IN A BENDING BEAM

V. I. Kramarenko UDC 539.379

In [1] the idea of an I-plastic material, namely, a material which satisfies the boundary conditions im-
posed on it not only by forming plastic regions, but also in slipping with respect to indlvidual surfaces, is
introduced. Variational formulations of the boundary value problem are considered in [2]. In this article the
problem of the plane bending of a beam is solved within the framework of these formulations.

We will assume that in the deformed material there is a potential slip line which cuts the beam into two
parts (Fig. 1). The position of the line and its shape is assumed to be known ¢he semiinverse formulation):
The line L is a straight line passing through the center of the beam at an angle of #/4 to its longitudinal axis.
We will assume that the material outside the slip line is deformed linearly elastically. Along the line we will
assume the continuity of the normal component of the displacement vector

Up — Uy = Uy — Uy, (D

where vy, vy, 14, Uy are the components of the displacement vectors on the right and left regions of the line L
(these regions will be denoted by Dy and D;). We will denote the discontinuity of the tangential component of the
displacement vector (the slipping) by R:

R = (v; — u)V 212 + (v, — u))/ 2/2.

We will assume that on these parts of the slip line where there is slipping, the tangential stress v depends only
on the value of the slipping:

T = f(R). 2

On parts where there is no slipping the line L does not function, and the elastic state of the material is
preserved. Experimental data show that the curve f(R) can have a falling part [f'(R) < 0]. The development of
the slipline for such materials can be both stable and unstable, By instability in the development we mean
more increases in the slipping and extension of the slip parts for a small increase in the load parameter.
Instability in the growth of the slip line appears as a certain increase in the slipping and the length of the slip-
ping parts for a small increase in the load parameter. Dynamic effects which occur when there is a sudden
development in the slip line from one stable state to another are not considered. We will assume that the
surfaces of the beam x,= +1/2 are free from stresses; at the ends of the beam there are no tangential stresses,
and the displacements normal to the surface are specified

wo=—Qu, for z =—I, —12< 2 <12, 3
vy = Qz, for z; =1 12z, <2,

where x; and X, are Cartesian coordinates and Q is the load parameter.

We will introduce the functional of the total "potential" energy [2]. For specified boundary conditions
with respect to the stresses the functional takes the form

D[y, u,, vy, v,] = % Ey Vydx,dzy + %E;j $odzyday, — jv Uds, @
Dy D, L

where y, = a, (uls + uds) - Gt o + a5 (U2 + u20)% Yo = & (V1 + VE2) + aovr w0+ a5 (D15 + V2 4 =1 =y
(14 )1 — 2v), a5 = 2v/((1 + v)(1 — 2v)), a; = 1/(2 + 2v) inthe case of plane deformation, @, =1/(1— 1%}, ay =2 v/
. R
1-v?, a3 =1/(2 +2 ) inthe case of the plane stressed state, [/ = S 7 (R) dR:isthe energy dissipation per unit length
0

ofthe slipline, E is Young's modulus, and v is Poisson's ratio. To solve this problem we will use the variational
principle of the minimum of the total "potential® energy [2]. According to this principle the actual displacements
yield a minimum of the functional (4) with respect to all the kinematically possible displacements (1) and (3).
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TABLE 1
n 0,41710,5 -0,625 0,833

Qy l 0,46 |0,15 0,13 0,12

Q, ‘0,18 0,651 0,15 0,13

In this case the requirement that the functional & should be stationary for condition (1) ensures continuity on
the line of possible slip of the normal and tangential component of the stress tensor. Hence, the problem re-
duces to minimizing the functional (4) with the continuity condition (1) and the boundary conditions (3). The
problem can be solved numerically by direct minimization of the functional — by the method of local variations
[3]. We will introduce the following dimensionless variables: 0y;l/(WE), R/, x,/1, Xo/1, ui/v, vi/v (i, j =1, 2)
(I is the width of the beam and v is the characteristic displacement), which we will denote in the same way as
the dimensional variables. We will choose the quadratic difference grid in the region considered so that the
line L intersects it only at junction points (the step of the grid Ax must fit a whole number of times into the
section I/2). In this case,at each point of intersection of the grid with the slip line there are two grid junction
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points: One junction point belongs to the region D, and the other to the region D;. As a result of this division
we obtain triangular cells along the line L and square cells in the remaining region. We will denote the square
cells by the symbol Ni; and the triangular cells of the region Dby the symbol P;j and those of the region D,
by the symbol Qij (i, j are the coordinates of the left lower vertex for this cell). The integrals {(4) over the
regions D; and D, are replaced by the sums

{ wdzdzym DT, (fdzdzm 2 Tn,
D, ’ VR Ds m,n

where Ig;=Hys((up q)x) (p, 4=1, 2) is the value of the integral over the cell Ny; (Pxj) of the region Dy, Jpyp =
Hyy((vp,g) 4 (P, a= 1, 2) is the value of the integral over the cell Nyn(Qpy) of the region Dy, H =
{(A@z for Ny (Nma), '

(Az)?/2 for Py (Qmn)
responding quantity in a cell: (y,4)%=(Wm+m ~Uymn) /AX, (Uy, 2% = (Wm+ins ~ Wmn)/AX for the cell Qup,
(g, ) = (Wksaler =~ Urld+1)/ 8%, (Ug9), = (Uyigeg — g)/Ax for the cell Py, and (uy 1)y = (Wiigjas = Ui + Ujpais)/
(24%), (uy,9), = (u1i+1j+1 = Ugipj + Wija uﬁj)/(ZAx) for the cell Njj. The mean values of the derivatives of the

components of the displacement vector, u,, v;, and vy, are calculated in a similar way, The value of the energy
dissipation along the slip line is approximated as follows:

is the area of the cell, the asterisk denotes the taking of the average value of the cor-

jydsz 28U (Ry;),
L &3

where S=Ax/V2 at the extreme junction points of the line and S=AxvV?Z at the remaining junction points; the
quantity U(Rij), where REJ- is the slip at the junction point with coordinates (i, j), is found from the diagram (2).

In order to reduce the value of the functional at each junction point the displacements Ui, Usij, Vimn,
Vomn are varied with a fixed variation period. Along the slip line the variation in the components of the dis-
placement vector obeys the continuity condition (1). For the initial value of the load parameter 2°> 0 before
the beginning of the variation process the initial approximation {the zeroth) is specified. The iteration is
assumed to be completed if at all junction points of the grating a further change in the components of the dis-~
placement vector with a specified variation period does not reduce the value of the functional. The variation
along the specified grating is completed when the variation period is reduced to the specified value. Subdivi-
sion of the grating is used to accelerate the process of convergence. When changing from one grating to
another the grating period Ax is reduced by a factor of 2, The initial approximation on the newly obtained finer
grating is linearly interpolated for the new junction points of the solution from the previous grating. For the
next value of the low parameter one specifies as the initial approximation the solution obtained on the previous
step. Since the variation for a specified 2 begins on a rough grating, the solution from the previous step is
first "matched" with the fine grating onthe initial coarse grating. The number of load periods is determined by
assigning a finite value of the load parameter Q. »

é program was compiled in FORTRAN using the above algorithm. The calculations were earried out on
the BESM-6 computer. The dimensions of the initial grating were 5 x 11, junction points and the dimensions of
the finer grating were 17 x 35 junction points.

The values of the parameters were chosen as follows: Q°=0-0,14,A2 =0.002-0.02, Qr=0.2. The varia-
tion of the components of the displacement vector was discontinued as soon as the variation period became less
than 2- 1078, In this case the value of the functional was determined to the third significant figure. As a check
version we solved the problem of the uniaxial extension of a beam with different f(R) diagrams, allowing
strengthening and weakening sections. The solutions obtained differed from the accurate solution by not more
than 0.8%. The solution of the problem of the bending of a beam for a strengthened material [f' (R) > 0! shows
that slip regions occur at the ends of the line L and as Q is increased they "penetrate® to the center of the
beam. An increase in the length of the slip parts and of the slips R themselves with respect to the load param-
eter always occurs monotonically. We will consider in more detail the case when the material is weakened
along the slip line; i.e,, as the slip R increases the cohesive forces along the edges of the slip line decrease.
We will confine ourselves to the linear approximation of the f(R) curve

Ts—nR for 0 <R<R,, (5)
f(R) = {0 for R>R,,

where R« =7g/n; 1> 0 is the slope of the falling part; and Tg is the dimensionless limit of the elasticity of the
material for shear. Note that the solution algorithm considered can be applied for functions f of any form and
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for arbitrary values of the displacements. The calculations were made for the following values of the param-
eters: 75=0.025, » =0.3, v=0.05, E=1, [=1. The value of 7 was varied from 1.25 to 0.19. When changing to
dimensional quantities this is equivalent to solving the problem with different slopes of the + —R diagram, dif- -
ferent elastic properties of the material, and different dimensions of the specimen. We will consider the de-
formation of a beam with an active load in successive steps AQ > 0 with respect to the load parameter @ from
an initial value Q° to a final value of k. The calculations show the following. When 0<Q <Q 1 the tangential
stress on the line of possible slip does not exceed the limit g, and the beam as a whole is deformed elastically
§27=0.1 for the above-specified value of 75). So long as Q >, there will be slip regions at the ends of the
slip line. When Q is increased further the slip and the length of the slip regions increase stably and sym-
metrically with respect to the center of the beam. If the slope of the curve (5) is fairly small (7 < 7% =0.375)
the slip line continues to develop stably and symmetrically as Q increases up to Q. If 7 > 7«, then for a cer-
tain value of Q= Q, the development of the slip line ceases to be stable: Forasmall increase in @ from Q= Q;
the increase in the length of one of the two slip parts occurs abruptly along the slip line, The length of the
other part does mot increase.

Hence, the symmetrical nature of the development of the slip line is disturbed; i.e., when an instability
occurs in the development of the slip line the symmetry condition itself becomes unstable. A further increase
in the load parameter 2> @, causes an unstable increase in the slipping and in the length of the slip parts while
preserving the nonsymmetry of the development of the line. However, for a certain value of Q =£24 the develop-
ment of the slip line again acquires an unstable character: Anabrupt increase in the length and in the slipping
of the upper slip part of the line L occurs. As a result of this the jump in the length of the slip parts and of the
slip which occurs in them are equalized. When & is increased from Q@ = Q, to @ = Qi the slip line keeps its
stable and symmetrical form of development. Note that for values of n close to the critical value 7«, the
values of the jumps in the slips and the jumps in the lengths of the slip parts are small, and the second jump in
the development of the line may not be present. We noted above that when @ > Q; the symmetry in the increase
in the slip parts is disturbed. We would expect however, that when Q > @, it would be possible in principle
for another form of development of the slip line to occur, when the jump occurs not on one but on both
parts of the slip and the symmetry of the development of the line is not disturbed. Hence, the point @ ={, is a
bifurcation point of the solution; i.e., when @ > 2, the functional has two local minima separated, as calculation
shows, by a fairly high "barrier." The solution for a certain load parameter Q'> Q, can be obtained by two
methods. The first method consists in first solving the problem for a certain value of Q° close to zero, then
for 2°+AQ etc. As the initial approximation we always use the solution from the previous step. This method,
in view of the calculation errors, which in this case play the role of small actual perturbations, always leads
to a minimum corresponding to asymmetry of the development of the line. The second method consists in
taking Q' >, immediately as the initial value of ", In this case the initial point (the zeroth approximation)
lies "equally far" from both minima and we would therefore expect that the procedure which was followed in the
iterations would also lead to a second minimum corresponding to the symmetrical solution. One of these solu-
tions is shown in Fig. 2. I should be noted that in the actual loading process the value of the load parameter
Q =Q' is reached by a gradual increase in @ from 0to Q' as AQ—0. Hence, only the solution obtained by the
first method — the asymmetrical solution — has actual meaning. The second (symmetrical) solution is only
possible theoretically.

Figure 2 also shows curves of the distribution of the slips along the slip line for different 2 and n =0.625.
Curves 1-3 correspond to the case of asymmetrical development when Q%=0.1 and AQ =0.005 and values of Q =
0.125, 0.130, and 0.150, and curves 4 and 5 were obtained for the same value of & =0.135, but the first cor-
responds to asymmetrical development of the line ©%=0.1, AQ =0.005) and the second to symmetrical develop-
ment (&Z°=0.135). The critical values of the load parameters £ and 2, for different 1 are shown in Table 1.
Figure 3 shows curves of the behavior of the supporting power {the value of the bending moment M) of the beam
as a function of @. Curves 1-3 correspond to values of 1 =0.833, 0.5, and 0.417. It is characteristic that as
the load parameter is increased the supporting power first increases, despite the appearance of slip parts, and
then begins to decrease, In this case the maximum value of the supporting power of the beam is reached when
Q7<Q< Qy, i.e., in the state of incipient slip along the line and until the first slip jump. A somewhat unexpected
result is observed in the behavior of the tangential stress along the edges of the slip parts (the components of
the stress tensor oy, Where the vector m is directed along 1). The tangential stress on the left edge of the
slip line is denoted by o_ and on the right by o+ . Curves 1'-3' of Fig. 4 correspond to the value o_ and
curves 1-3 to the value 4. Consider the lower half of the beam. So long as the beam is in the elastic state

- all the components of the stress tensor on the slip line are continuous. When the line becomes activized (when
slip occurs) discontinuities in the tangential stresses occur at the same time (curves 1 and 1' of Fig. 4 for @ =
0.12 and 1 =0.5). For small Q the stresses o_ and ¢4 are contracting.
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This is natural since contracting forces act on the lower half of the ends of the beam. However, when
the load parameter is increased further the value of o becomes positive — a stretching region occurs due to
slip along the line L (curve 2, Fig. 4, 2= 0,13and 7 =0.5). Similar behavior of the stresses is observed in
the upper half of the beam (see Fig. 4). Note that the variational formulations of the boundary-value problems
[2] and the algorithm considered can also be used to solve problems on the development of cracks in normal
fracture.

The author thanks E. I Shemyakin and A. F. Revuzhenko for their interest and useful comments.
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NUMERICAL SIMULATION ON A COMPUTER OF
THE PROCESS OF EXPLOSIVE FORMING

V. K. Borisevich, V, P, Sabel'kin, UDC 51.380.115: 983.044
and S. N. Solodyankin

The problem of simulating the dynamic behavior of an axisymmetrical blank for explosive forming under
plane stressed state conditions with rigid fastening or hinged rest on a contour is considered in a number of
papers [1-4] (a detailed bibliography is given in [5]), and in [6] a method is described for determining the dy-
namic behavior of thin nonaxisymmetrical shells of ideally plastic material deformationally hardened and sensi-
tive to the rate of deformation for the boundary conditions described above. In this paper we describe a method
for the numerical calculation of the dynamic behavior of nonaxisymmetrical blanks of complex configuration,
Unlike publications where problems unrelated to practice are solved, here we simulate the process of forming~
drawing, taking into account both the displacement of the flange part of the blank and the forces of friction which
occur on the flange part of the blank during high-speed deformation, In addition, as a result of an optimizational
search the optimum external load applied to the blank is determined, which enables the values and positions of
the charges required to deform it to be found.

1. The system of differential equations describing the motion of a blank (more accurately a Lagrange
network, connected with its middle surface) can be written exactly as in [5] and can be solved in explicit form
using the method of finite differences [7]. It turns out that the finite-difference model is sensitive to the integra~
tion step in time. In addition, the stability of the difference scheme depends on the initial value of the cell of
the integration network. According to [8], the upper boundary of the integration step in time is expressed in the
form

At = 2/ Opaxy

where wyax is the highest eigenfrequency of the corresponding finite-difference model. However, solving
problems it is extremely inconvenient to determine in advance the frequency wy,,« corresponding to each speci-
fie finite-difference model. Hence, to determine At one can use the condition [5]

At < AXmin(p(t — v)/E)/2

where AXy, iy is the value of the cell of the network, g is the density of the material of the blank, » is Poisson's
ratio, and E is Young's modulus, When integrating the equations at each subsequent instant of time one deter-
mines the displacement of the junction points of the Lagrange network, If at the initial instant of time t =0 we
write the equation of motion

. P
Frun = PY1;m,
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