
D E V E L O P M E N T  O F  A S L I P  L I N E  IN A B E N D I N G  B E A M  
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In [1] the idea of an L-p las t i c  m a t e r i a l ,  namely ,  a ma t e r i a l  which sa t i s f i es  the boundary conditions im-  
posed on it not only by fo rming  plas t ic  regions ,  but also in sl ipping with r e spec t  to individual su r f aces ,  is 
introduced. Varia t ional  formula t ions  of the boundary value p rob lem a re  cons idered  in [2]. In this a r t i c l e  the 
p rob lem of the plane bending of a beam is solved within the f r a m e w o r k  of these  formulat ions .  

We will a s s u m e  that in the deformed m a te r i a l  t he r e  is a potential  s l ip  line which cuts the b e a m  into two 
pa r t s  (Fig. 1). The posit ion of the line and its shape is a s sumed  to be  known (the s e m i i n v e r s e  formulat ion):  
The line L is a s t ra igh t  line pass ing  through the cen te r  of the beam at an angle of 1r/4 to its longitudinal axis.  
We will a s s u m e  that  the m a t e r i a l  outside the s l ip  line is deformed l inear ly  elastic_ally. Along the line we well 
a s s u m e  the continuity of the no rma l  component  of the d isp lacement  vec tor  

v~ - -  u~ = v2 - -  u 2 ,  (i) 

where  vl,  v2, ul, u 2 a r e  the components  of the d isp lacement  vec to r s  on the right and left regions of the line L 
(these regions will be denoted by D2 and D1). We will denote the discontinuity of the tangential  component of the 
d isp lacement  vec tor  (the slipping) by R: 

R = (v, - -  ul)V-2/2 q- (v2 - u~)V-2/2. 

We will a s s u m e  that  on these  par t s  of the s l ip line where  the re  is sl ipping, the tangent ia l  s t r e s s  T depends only 
on the value of the slipping: 

= I(R). (2 )  

On par t s  where  t he r e  is no sl ipping the line L does not function, and the elast ic  s ta te  of  the ma te r i a l  is 
p r e s e r v e d .  Exper imenta l  data show that  the curve  f(R) can have a fall ing par t  [f'(R) < 0]. The development of 
the s l ip l ine  fo r  such m a t e r i a l s  can be both s table  and unstable.  By instabil i ty in the development  we mean 
m o r e  inc reases  in the sl ipping and extension of the s l ip par t s  for  a sma l l  inc rease  in the load p a r a m e t e r .  
Instabi l i ty  in the growth of the s l ip line appea r s  as a ce r t a in  inc rease  in the sl ipping and the length of the s l ip -  
ping par t s  for  a sma l l  i nc rease  in the load p a r a m e t e r .  Dynamic effects  which occur  when t h e r e  is a sudden 
development  in the s l ip  l ine f r o m  one s table  s ta te  to another  a r e  not cons idered .  We will a s s u m e  that  the 
su r f aces  of  the b e a m  x 2 ~ ~ l / 2  a re  f r ee  f r o m  s t r e s s e s ;  at the ends of the beam the re  a r e  no tangential  s t r e s s e s ,  
and the d i sp lacements  no rm a l  to the su r face  a r e  speci f ied  

Ul------Qx2 for x 1 = - - l ,  - - I / 2 < ~ x 2 ~ 1 / 2 2  (3) 
v 1 ---- f}x~ for x l  = l, - - l / 2  ~ x~ <.  l /2,  

where  x 1 and x 2 a r e  Car tes ian  coordinates  and i2 is the lead p a r a m e t e r .  

We will introduce the functional of the total  "potential"  energy  [2]. For  specif ied boundary conditions 
with r e spec t  to the s t r e s s e s  the functional takes  the f o r m  

DI Dt L 

where  , ,  ----- a 1 (u2,~ ~- u22,2) -[- a2ttl,tU2, 2 ~- a 8 (u~,2 + u2,1)~; ~2~ : a, (v~,l -}- v~,2) ~ a : v l ,  tv2:~ -~ a s (vi,2 -~ v2,i)2; a~ = (1 --  v)/ 
((1 -4- v)(l --  2v)), as_--_ 2~/((t -I- v)(t - -  2v)), a.~ = t/(2 -f- 2v) in the case  ofplane deformat ion ,  a~ = 1 / ( 1 - p 2 ) , a 2 = 2 P /  

R 

( 1  - p2), a3 = 1/(2 + 2 p) in the ease  of the piane s t r e s s e d  state,  U = S / (R) d R ~ i s  the ene rgy  dis s ipat ion pe r  v~it length 
0 

of the s l ip  line, E is Yotmg's  modulus,  and u is P o i s s o n ' s  ra t io .  To solve this p rob lem we will use the var ia t iona l  
pr inciple  of the min imum of the  to ta l  "potential"  energy  [2]. According  to this pr inciple  the actual  d i sp lacements  
yield a m in imum of the functional (4) with r e s pec t  to all  the k inemat ica l ly  poss ib le  d i sp lacements  (1) and (3). 
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TABLE 1 

10,4t7 0,5 [ 0,625 I 0, 833 

In this  ca se  the r e q u i r e m e n t  that  the functional 4~ should be s t a t ionary  fo r  condition (1) ensures  continuity on 
the l ine of  poss ib le  s l ip  of the no rm a l  and tangent ia l  component  of the s t r e s s  t ensor .  Hence,  the p rob lem r e -  
duces to min imiz ing  the functional (4) with the continuity condition (1) and the boundary conditions (3). The 
p rob l em can be solved n u m e r i c a l l y  by d i rec t  min imiza t ion  of the functional - by the method of local  var ia t ions  
[3]. We will  introduce the following d imens ion less  v a r i a b l e s :  a i j l / ( vE)  , R / v ,  x l / l  , x2//, u i /v ,  v i / v  (l, j =1, 2) 
(l is the  width of the b e a m  and v is the  c h a r a c t e r i s t i c  d isp lacement) ,  which we will denote in the s a m e  way as 
the d imensional  va r i ab l e s .  We will choose  the quadrat ic  d i f ference  grid in the region cons idered  so that  the 
l ine L in te r sec t s  it only at junction points (the s tep of the gr id  Ax m u s t  fi t  a whole number  of t i m e s  into the 
sec t ion  l / 2 ) ,  In this  case ,  at each  point of in tersec t ion  of the gr id  with the s l ip l ine t he r e  a r e  two gr id  junction 
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points:  One junction point belongs to the region D 1 and the o ther  to the region D 2. As a resu l t  of  this division 
we obtain t r i angu la r  cel ls  along the line L and square  cel ls  in the r ema in ing  region. We will denote ~;he square  
ce l l s  by  the symbol  N i- and the t r i angu la r  cel ls  of  the region Dlby the symbol  Pi j  and those  of the region D2 
by  the symbol  Qij (i, j ]are the coordinates  of the l e f t  lower  ve r t ex  for  this  cell).  The integrals  (4) ove r  the 
regions  D 1 and D 2 a r e  r ep laced  by the sums  

Dz  

where  Ik/=Hr (p, q =1, 2) is the value of the in tegral  ove r  the cel l  Nk/(Pkl)  of the region D1, Jmn  = 
Hr , (p, q = 1, 2) is the value of the in tegra l  ove r  the cel l  Nmn(Qmn) of the region D2, H := 

{ (hx)~ for  Nhz(N~) ,  
(Ax)~/2 for Ph~ (Qm~) is the a r e a  of the cel l ,  the a s t e r i s k  denotes  the taking of the ave rage  value of the c o r -  

responding quantity in a cel l :  (ul,1). = (Ulm+ m -  Ulmn)/Ax , (Ul,2). = (Uim+m+i - u l m + m ) / & x  for  the cell  Qmn, 
(ul,1), = (Ulk+ll+l - Ulk/+l)/Ax, (ul,2), = (ultd+l - Ulkl)/&x for  the cel l  Pkl, and (ulA), = (uli+lj+ 1 - ulij+ 1 + uli+li j) /  

(2~:), (ul.2) , = (Uli+lj+ i - uli+l j + ulij+ 1 - uli j) /(2&x ) for  the cel l  Nij. The mean  values  of the der iva t ives  of the 
components  of the d i sp lacement  vec to r ,  u2, Vl, and v2, a r e  calcula ted in a s i m i l a r  way. The value of ~he energy  
diss ipat ion along the s l ip line is app rox ima ted  as follows: 

SUds .~ .~. SU (Rt.~), 
L ~s3 

where  S=~x/42 at the  e x t r e m e  junction points of  the line and S =Axe'2 at the r emain ing  junction points,  the 
quantity U(Rij) , where  Rij is the s l ip  at the junction point with coordinates  (i, j) ,  is found f r o m  the d i ag ram (2). 

In o r d e r  to reduce  the value of the functional at each junction point the d i sp lacements  ulij,  u2ij, Vlmn, 
Vzmn a r e  va r i ed  with a fixed var ia t ion  period.  Along the s l ip  line the var ia t ion  in the componerits Of the d i s -  
p lacement  vec tor  obeys  the continuity condition (1). Fo r  the initial value of the load p a r a m e t e r  ~2~ 0 before  
the beginning of the var ia t ion  p roces s  the initial approximat ion  (the zeroth) is specif ied.  The i terat ion is 
a s s u m e d  to be comple ted  if at all  junction points of  the gra t ing  a fu r the r  change in the  components  of the d is -  
p lacement  vec to r  with a speci f ied  var ia t ion  per iod does not reduce  the value of the functional. The var ia t ion  
along the speci f ied  gra t ing  is comple ted  when the var ia t ion  per iod is reduced to the speci f ied  value. Subdivi- 
sion o f  the gra t ing  is used to a c c e l e r a t e  the  p roces s  of convergence .  When changing f r o m  one grat ing to 
another  the gra t ing  per iod Ax is reduced by  a fac tor  of 2. The initial approximat ion  on the newly obtained f iner  
gra t ing  is l inear ly  in terpola ted  for  the new junction points of  the solution f r o m  the previous  grat ing.  For  the 
next value of the low p a r a m e t e r  one spec i f ies  as the initial approximat ion  the solution obtained on the previous  
step.  Since the va r i a t ion  for  a specif ied 12 begins on a rough grat ing,  the solution f r o m  the previous  s tep  is 
f i r s t  "matched"  with the fine gra t ing  onthe  initial c o a r s e  grating.  The number  of load  per iods  is de te rmined  by 
ass igning  a finite value of the load p a r a m e t e r  ~2 k, 

A p r o g r a m  was compi led  in FORTRAN using the above a lgor i thm.  The calcula t ions  were  c a r r i e d  out on 
s* 

the BESM-6 computer .  The d imensions  of  the initial g ra t ing  were  5 • 11, junction points and the d imensions  of 
the f iner  gra t ing  were  17 x35 junction points.  

The values of the p a r a m e t e r s  were  chosen as follows: f l~ =0 .002 -0 .02 ,  ~2k=0.2. The v a r i a -  
tion of the components  of  the d isp lacement  vec to r  was discontinued as soon as the  var ia t ion  per iod bec ame  l e s s  
than 2" 10 -6. In this  ca se  the  value of the functional was de te rmined  to the th i rd  significant f igure.  As a check 
ve r s ion  we solved the p rob lem of the uniaxial extension of a b e a m  with different f(R) d i a g r a m s ,  a11owi~g 
s t rengthening and weakening sect ions .  The solutions obtained dif fered f r o m  the accura te  solution by not m o r e  
than 0.8%. The solution of the p rob lem of the bending of a b e a m  for  a s t rengthened ma te r i a l  if '  (R) > 01 shows 
that  s l ip  regions  occur  at the ends of  the line L and as ~ is inc reased  they "penetra te~ to the cen te r  of the 
beam.  An inc rease  in the length of the s l ip  pa r t s  and of the s l ips  R t h e m s e l v e s  with r e spec t  to the load p a r a m -  
e te r  a lways occu r s  monotonical ly.  We will  cons ider  in m o r e  detail  the case  when the  ma te r i a l  is weakened 
along the s l ip l ine;  i .e . ,  as  the s l ip  R inc reases  the cohes ive  fo rces  along the edges of the s l ip  line dec rea se .  
We will confine ou r se lves  to the l inear  approx imat ion  of the f(R) curve  

f ( R ) = { 0 , - - T ] R  for 0 < / ~ < R , ,  (5) 
for R ~ R,~: 

where  R .  = ~ 's /~ ; ~7 > 0 is the s lope of  the fal l ing par t ;  and ~'s is the  d imens ion less  l imi t  of the e las t ic i ty  of the 
m a t e r i a l  for  shear .  Note that  the solution a lgor i thm cons idered  can be applied for  functions f of any f o r m  and 
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fo r  a r b i t r a r y  va lues  of  the d i sp lacements .  The calcula t ions  were  made for  the following values of  the p a r a m -  
e t e r s :  7 s = 0 . 0 2 5 ,  v =0.3,  v= 0 .05 ,  E = I ,  l=l. The value of ~ was va r i ed  f r o m  1.25 to 0.19. When changing to 
d imensional  quanti t ies th is  is equivalent to solving the p rob l em with different s lopes  of  the ~ - R  d i ag ram,  dif- 
fe ren t  e las t ic  p r o p e r t i e s  of  the  m a t e r i a l ,  and different d imensions  of  the spec imen .  We will  cons ider  the de-  
fo rma t ion  of  a b e a m  with an ac t ive  load in succes s ive  s teps  ~ > 0 with r e spec t  to the load p a r a m e t e r  a f r o m  
an initial  value 12 ~ to a f inal  value of ~2 k. The calcula t ions  show the following. When 0 < a < ~2 l the tangent ia l  
s t r e s s  on the l ine of  poss ib le  s l ip  does not exceed the l imi t  ~s ,  and the  b e a m  as awhole  is  d e f o r m e d e l a s t i c a l l y  
~l=O.1 for  the above - spec i f i ed  value of ~'s). So long as  ~ >t2/,  t h e r e  will  be s l ip  reg ions  at the ends of the 
s l ip  l ine.  When 12 is i nc reased  fu r the r  the  s l ip  and the  length of the  s l ip  regions  i nc rea se  s tably  and s y m -  
m e t r i c a l l y  with r e s pec t  t o t h e  cen t e r  of  the beam.  If the s lope of the cu rve  (5) is f a i r ly  sma l l  (~? < ~?, =0.375) 
the  s l ip  l ine continues to develop s tab ly  and s y m m e t r i c a l l y  as 12 i nc rea se s  up to ~k" If ~ > 77,, then for  a c e r -  
ta in  value of~2 = ~ l t h e  development  of the s l ip  l ine cea se s  to be  s tab le :  F o r  a s m a U  inc rease  in ~2 f r o m  ~2 = ~21 
the  i nc rea se  in the  length of one of the  two s l ip  pa r t s  occu r s  abrupt ly  along the s l ip  l ine.  The length of the 
o ther  pa r t  does not inc rease .  

Hence ,  the s y m m e t r i c a l  na ture  of  the  development  of the s l ip l ine is d is turbed;  i .e . ,  when an instabi l i ty 
occu r s  in the development  of the s l ip  l ine the s y m m e t r y  condition i t se l f  b e c o m e s  unstable.  A fu r the r  inc rease  
in the load p a r a m e t e r  ~ > ~21 causes  an unstable i nc rea se  in the s l ipping and in the  length of the s l ip pa r t s  while 
p r e s e r v i n g  the n o n s y m m e t r y  of the  development  of the line. However ,  for  a ce r t a in  value of ~2 =~22 the develop-  
men t  of  the  s l ip  l ine again  acqu i re s  an unstable c h a r a c t e r :  An abrupt  i nc rea se  in the  length and in the sl ipping 
of the upper  s l ip  par t  of the l ine L Occurs .  As a r e su l t  of  this  the jump in the length of the s l ip pa r t s  and of the  
s l ip  which o c c u r s  in t h e m  a re  equalized.  When ~2 is inc reased  f r o m  ~2 = ~22 to ~2 = ~2 k the sl ip line keeps  i ts  
s table  and s y m m e t r i c a l  f o r m  of  development .  Note that for  values  of 77 c lose  to the c r i t i ca l  value ~7., the 
values  of  the  jumps  in the s l ips  and the jumps in the lengths of the s l ip  pa r t s  a r e  sma l l ,  and the second jump in 
the development  of  the l ine m a y  not be  p resen t .  We noted above that  when ~2 > f~I the s y m m e t r y  in the i n c r ea se  
in the s l ip  p a r t s  is d is turbed.  We would expec t  however ,  that  when ~ > a i  it would be poss ib le  in pr inc ip le  
for  another  f o r m  of development  of the s l ip l ine to occur ,  when the jump occur s  not on one but on both 
pa r t s  of the  s l ip  and the  s y m m e t r y  of the development  of the line is not dis turbed.  Hence,  the point 12 = ~ l  is a 
b i furcat ion point of  the solution; i .e . ,  when ~2 > ~21 the  functional  has  two local  m in ima  sepa ra t ed ,  as calculat ion 
shows,  by a fa i r ly  high " b a r r i e r . "  The solution for  a ce r t a in  load p a r a m e t e r  ~2, > ~21 can be obtained by two 
methods .  The f i r s t  method cons i s t s  in f i r s t  solving the p r o b l e m  for  a ce r t a in  value of ~2 ~ c lose  to zero ,  then 
for  ~2 ~ + ~  etc.  As the  init ial  approx imat ion  we a lways  use  the solution f r o m  the prev ious  step.  This  method,  
in view of the ca lcula t ion e r r o r s ,  which in this  c a s e  play the ro le  of smal l  actual  pe r tu rba t ions ,  always leads 
to a m in imum cor re spond ing  to a s y m m e t r y  of the development  of the line. The second method cons is t s  in 
taking a '  > 121 immedia t e ly  as the  initial  value of ~2 0. In th is  ca se  the initial point (the zero th  approximation)  
l ies  ~equally f a r "  f r o m  both m i n i m a  and we would t h e r e f o r e  expect that  the  p rocedu re  which was followed in the 
i tera t ions  would a lso  lead to a second m i n i m u m  cor respond ing  to the s y m m e t r i c a l  solution. One of these  so lu-  
t ions is shown in Fig. 2. tt should be noted that  in the actual  loading p r o c e s s  the value of the load p a r a m e t e r  
12 =~2' is r eached  by a gradual  i nc rease  in 12 f r o m  0 to ~2, as L~2-*0. Hence,  only the solution obtained by the 
f i r s t  method - the a s y m m e t r i c a l  solution - has  actual  meaning.  The second ( symmetr ica l )  solution is only 
poss ib le  theore t ica l ly .  

F igure  2 a lso  shows cu rves  of the dis tr ibut ion of the s l ips  along the s l ip  line for  different 12 and ~7 =0.625. 
Curves  1-3 c o r r e s p o n d  to the case  of a s y m m e t r i c a l  development  when ~2 ~ = 0.1 and A~ = 0.005 and values of ~ = 
0.125, 0.130, and 0.150, and cu rves  4 and 5 were  obtained for  the s a m e  value of ~2 =0.135, but the f i r s t  c o r -  
responds  to a s y m m e t r i c a l  development  of the line ~ 0  =0.1, Al2 = 0.005) and the second to s y m m e t r i c a l  develop- 
ment  ~2~ The c r i t i c a l  va lues  of the  load p a r a m e t e r s  l-I 1 and 122 for  different ~ a r e  shown in Table 1. 
F igure  3 shows cu rves  of the  behav io r  of the support ing power (the value of the bending moment  M) of the b e a m  
as a function ofl2.  Curves  1-3 c o r r e s p o n d  to values  of ~ =0.833, 0.5, and 0.417. It is cha rac t e r i s t i c  that as 
the load p a r a m e t e r  is inc reased  the suppor t ing  power  f i r s t  i nc reases ,  despi te  the appearance  of s l ip  pa r t s ,  and 
then begins to dec rea se .  In this  ca se  the m a x i m u m  value of the support ing power of the b e a m  is reached  when 
~21 < 12 < ~ l ,  i .e . ,  in the s ta te  of incipient s l ip  along the line and until the f i r s t  s l ip  jump. A somewhat  unexpected 
resu l t  is obse rved  in the behav ior  of the tangent ia l  s t r e s s  along the edges of the s l ip pa r t s  (the components  of 
the s t r e s s  t e n s o r  ~ m m ,  where  the vec to r  m is d i rec ted  along L). The tangent ia l  s t r e s s  on the left edge of the 
s l ip  l ine is denoted by ~_ and on the r ight  by cr+. Curves  1 ' - 3 '  of Fig. 4 co r r e spond  to the value c~_ and 
cu rves  1-3 to the  value ~r+. Consider  the  lower  half  of  the  beam.  So long as the b e a m  is in the e las t ic  s ta te  
all  the  components  of  the  s t r e s s  t e n s o r  on the s l ip  l ine a r e  continuous. When the line becomes  act ivized (when 
s l ip  occurs)  discontinuit ies  in the tangent ia l  s t r e s s e s  occur  at the s ame  t i m e  (curves 1 and 1' of Fig. 4 for  ~ = 
0.12 and ~/=0.5). Fo r  sma l l  12 the s t r e s s e s  ~_ and a +  a r e  contract ing.  
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This is na tura l  s ince cont rac t ing  fo rces  act on the lower  half  of  the ends of the beam.  However ,  when 
the load p a r a m e t e r  is inc reased  fur ther  the value of cr+ becomes  posi t ive - a s t r e t ch ing  region occurs  due to 
s l ip along the line L (curve 2, Fig. 4, ~ =  0.13and 77 =0.5). S imi la r  behav ior  of the s t r e s s e s  is obse~ced in 
the upper  half  of the b e a m  (see Fig. 4). Note that  the var ia t iona l  formula t ions  of the boundary-va lue  p ro b l ems  
[2] and the a lgor i thm cons idered  can a lso  be  used to solve p rob lems  on the development  of  c r acks  in no rma l  
f rac tu re .  

The author thanks E. I. Shemyakin and A. F. Revuzhenko for the i r  in teres t  and useful comment s .  
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N U M E R I C A L  S I M U L A T I O N  ON A C O M P U T E R  O F  

T H E  P R O C E S S  O F  E X P L O S I V E  F O R M I N G  

V. K .  B o r i s e v i e h ,  V. P .  S a b e l ' k i n ,  
a n d  S. N. S o l o d y a n k i n  
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The p rob l em of s imula t ing  the dynamic behav ior  of an a x i s y m m e t r i c a l  blank for  explosive forming under 
plane s t r e s s e d  s ta te  conditions with r igid fas tening or  hinged res t  on a contour  is cons idered  in a number  of 
paper s  [1-4] (a detai led bibl iography is given in [5]), and in [6] a method is descr ibed  for  de termining  the dy- 
namic  behavior  of thin nonax i symmet r i ca l  shel ls  of ideally plas t ic  ma t e r i a l  deformat ional ly  hardened and s en s i -  
t i r e  to the r a t e  of deformat ion  for  the boundary conditions descr ibed  above. In this  paper  we desc r ibe  a method 
for  the  numer i ca l  calculat ion of the dynamic behav ior  of nonax i symmet r i ca l  blanks of complex  configuration.  
Unlike publications where  p rob lems  unrela ted  to p rac t i ce  a r e  solved,  he re  we s imula te  the p roce s s  of f o r m i n g -  
d rawing , tak ing in to  account  both the d isp lacement  of the  flange par t  of the blank and the fo rces  of  fr ict ion which 
occur  on the flange par t  of  the blank during h igh-speed  deformation.  In addition, as a resu l t  of  an opt imizat ional  
s e a r c h  the op t imum external  load applied to the blank is de te rmined ,  which enables the values and posi t ions of 
the cha rges  requ i red  to de fo rm it to be found. 

1. The s y s t e m  of different ial  equations descr ib ing  the motion of a blank (more  accu ra t e ly  a Lagrange  
network,  connected with its middle surface)  can be wri t ten exact ly  as in [5] and can be solved in explicit  f o r m  
using the method of finite d i f fe rences  [7]. It tu rns  out that  the f in i te -d i f fe rence  model is sens i t ive  to the in tegra-  
tion s tep  in t ime .  In addition, the s tabi l i ty  of the d i f ference  scheme  depends on the initial value of the cel l  of 
the integrat ion network. Accord ing  to [8], the upper  boundary  of the integrat ion s tep in t i m e  is exp re s sed  in the 
f o r m  

At = 2/COmax) 

where  COma x is the highest  e igenfrequeney of the co r respond ing  f in i te -d i f fe rence  model.  However ,  solving 
p rob lems  it is e x t r e m e l y  inconvenient to de t e rmine  in advance the f requency COma x cor responding  to each spec i -  
fic f in i te -d i f fe rence  model.  Hence,  to de te rmine  At one can use the  condition [5] 

At ~< AXmin(p(t - -  ~2)/E)V~ 

where  ~Xmi  n is the value of the  cel l  of the network,  p is the densi ty of the m a t e r i a l  of the blank, y is Poisson,s  
ra t io ,  and E is Young's modulus.  When in tegra t ing  the equations at each subsequent  instant of t i m e  one de t e r -  
mines  the d i sp lacement  of the junction points of the Lagrange  network. If at the initial instant of t ime  t = 0 we 
wr i te  the equation of motion 

F j -**i n,,, = O Y ~ , ,  

Kharkov.  T rans l a t ed  f r o m  Zhurnal  Pr ikladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 2, pp. 165-175, 
March -Apr i l ,  1979. Or ig inal  a r t i c le  submit ted  March  20, 1978. 
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